BAB II

LANDASAN TEORI

2.1 Definisi Sistem

Sistem adalah sekumpulan elemen atau komponen yang saling berhubungan, bekerja sama, dan berinteraksi untuk mencapai suatu tujuan tertentu. Sistem terbentuk dari beberapa subsistem yang saling mendukung, sehingga jika ada bagian yang tidak berjalan dengan baik maka tujuan sistem secara keseluruhan akan terganggu. (Muhammad Halmi Dar Sistem - Google Scholar, n.d.)

Dalam penelitian Perancangan aplikasi absensi berbasis Android di SD Mis Baiturrahman Labuhanbatu selatan, tahapan pemrosesan data dilakukan secara langsung. Data yang diperoleh kemudian melalui tahapan Masukkan (input), pengolahan (processing), keluaran (output). (Pratama et al., 2023)

Gambar 2.1 Aliran Suatu Sistem Gambar

2.2 Sistem Absensi Konvensional dan Modern

Sistem absensi konvensional umumnya mengacu pada metode pencatatan kehadiran yang dilakukan secara manual atau dengan menggunakan teknologi sederhana, tanpa bantuan sistem digital terintegrasi.

Menurut Kamel et al. (2020), absensi adalah proses pencatatan data yang bertujuan untuk mengetahui tingkat kehadiran seseorang dalam suatu kegiatan, atau lingkungan kerja. Absensi konvensional merupakan kegiatan pencatatan kehadiran yang dilakukan secara manual untuk mengetahui seseorang hadir atau tidak hadir.

Sistem absensi ini menggunakan metode secara manual untuk mencatat kehadiran seseorang, metode yang digunakan antara lain sebagai berikut:

- Buku absensi digunakan guru untuk mencatat kehadiran siswa dengan menandatangani atau menceklis nama siswa dibuku absensi. Metode sederhana ini mudah dipahami, tetapi rentan terjadi kesalahan dalam penulisan, kehilangan buku, dan manipulasi data. Proses perhitungan kehadiran juga memakan waktu.
- Daftar hadir umumnya sama dengan buku absensi, tapi biasanya berupa lembaran kertas yang dibagikan kepada siswa untuk ditandatangani.
 Metode ini juga rentan terjadi kesalahan dan kehilangan data.
- 3. Kartu absensi, meskipun umumnya kurang digunakan di sekolah dasar, ada beberapa sekolah yang menggunakan kartu absensi sederhana yang telah diisi oleh guru. Metode ini lebih sedikit terorganisir dari pada daftar hadir, tetapi masih rentan terjadi kesalahan kehilangan kartu absensi dan kesalahan dalam pencatatan kehadiran.

Sedangkan sistem absensi modern adalah sistem pencatatn kehadiran yang menggunakan teknologi digital dan otomatis untuk meningkatkan efesiensi, akurasi, dan keamanan data kehadiran.

Menurut Syahputra (2023), sistem absensi modern adalah mekanisme pencatatan kehadiran, waktu masuk, dan waktu keluar secara sistematis yang memanfaatkan teknologi digital, seperti aplikasi *mobile*, dan sistem berbasis web. Sistem ini dirancang untuk meningkatkan efesiensi dan akurasi dalam proses pengelolaan kehadiran pegawai, dan meminimalkan manipulasi data terhadap kesalahan pencatatan.

Meskipun sistem ini sederhana dan mudah dipahami, tetapi sistem absensi modern jauh lebih efektif disbanding dengan sistem absensi modern dalam hal akurasi, efesiensi, dan kemudahan penggunaan, keamanan data.

2.2.1 Karakteristik Sistem

Bentuk umumnya sebuah sistem terdiri dari *input*, *processing*, *output*. Adapun karakteristik suatu sistem sebagai berikut:

1. Komponen Sistem (*Components*)

Sistem terdiri dari beberapa elemen atau bagian yang saling berinteraksi dan bekerja sama membentuk satu kesatuan. Komponen ini bisa berupa subsistem yang menjalankan fungsi tertentu dan saling mempengaruhi dalam keseluruhan sistem.

2. Batasan Sistem (*Boundary*)

Batasan sistem adalah garis pemisah yang membedakan antara sistem dengan sistem yang lain. Batas ini menentukan ruang lingkup sistem

sehingga sistem dapat dipandang sebagai satu kesatuan yang tidak terpisahkan.

3. Lingkungan Luar Sistem (*Environment*)

Lingkungan luar adalah segala sesuatu di luar batas sistem yang dapat mempengaruhi operasi sistem, baik secara positif maupun negatif. Lingkungan ini penting untuk diperhatikan agar sistem dapat berfungsi dengan baik dan berkelanjutan.

4. Penghubung Sistem (*Interface*)

Penghubung adalah media atau sarana yang menghubungkan satu subsistem dengan subsistem lainnya, memungkinkan aliran sumber daya, informasi, atau energi dari satu bagian ke bagian lain dalam sistem.

5. Masukan Sistem (*Input*)

Masukan (Input) adalah energy yang dimasukkan ke dalam sistem tersebut.

6. Pengolahan Sistem (*Process*)

Pengelolaan sistem adalah suatu bagian pengolah yang akan merubah masukan menjadi keluaran.

7. Keluaran Sistem (*Output*)

Keluaran sistem adalah hasil dari energi yang telah diolah dan diproses menjadi keluaran yang berguna.

8. Sasaran atau Tujuan Sistem (*Objective/Goal*)

Setiap sistem memiliki tujuan atau sasaran yang ingin dicapai, keberhasilan sistem diukur dari tercapainya tujuan tersebut.

2.2.2 Klasifikasi Sistem

Sistem itu seperti kumpulan bagian yang saling berhubungan dan bekerja bersama untuk mencapai tujuan tertentu. Sistem bisa dibedakan menjadi beberapa jenis berdasarkan ciri-cirinya, yaitu:

1. Sistem Fisik dan Sistem Abstrak

Sistem fisik adalah sistem yang bisa dilihat dan sentuh, seperti komputer, mobil, atau pabrik. Sedangkan sistem abstrak adalah sistem yang berupa ide-ide atau konsep, misalnya sistem kepercayaan.

2. Sistem Alam dan Sistem Buatan Manusia

Sistem alam adalah sistem yang terjadi melalui sebuah proses alam, tidak dibuat oleh manusia, misalnya ekosistem hutan atau siklus air. Sedangkan sistem buatan manusia adalah sistem yang dibuat oleh manusia, seperti sistem sekolah, sistem komputer, atau sistem transportasi.

3. Sistem Terbuka dan Sistem Tertutup

Sistem terbuka adalah sistem yang selalu berinteraksi dengan lingkungan sekitar, menerima input dari luar dan memberikan output ke luar, misalnya tubuh manusia yang menerima makanan dan udara dari lingkungan. Sedangkan sistem tertutup adalah sistem yang tidak berhubungan dengan lingkungan luar dan tidak ada pengaruh dari luar ke

dalam sistem. Contohnya sulit ditemukan di kehidupan nyata, tapi bisa seperti mesin yang bekerja sendiri tanpa gangguan dari luar.

4. Sistem tertentu dan Sistem tak tertentu

Sistem tertentu adalah kumpulan bagian atau elemen-elemen yang sudah jelas dan spesifik, yang saling berhubungan dan bekerja sama untuk mencapai suatu tujuan yang sudah ditentukan.

Sistem tak tertentu adalah sistem yang masa depannya tidak bisa diprediksi dengan pasti karena terdapat unsur ketidakpastian atau probabilitas.

2.3 Android

Android adalah sebuah sistem operasi yang dibangun di atas *kernel Linux* dan dirancang khusus untuk perangkat mobile dengan layar sentuh seperti *smartphone* dan tablet. Sistem ini awalnya dikembangkan oleh Android Inc, dengan tujuan menyediakan sistem operasi untuk kamera digital, namun kemudian beralih fokus ke ponsel pintar.

Google mengambil alih proyek ini dan mengembangkan Android sebagai platform open source yang kini digunakan secara luas di berbagai perangkat elektronik. Peluncuran perangkat Android pertama terjadi pada tahun 2008, dan terus berkembang menjadi sistem operasi paling dominan di pasar perangkat seluler.

2.3.1 Sejarah Android

Android bermula pada tahun 2003 ketika sebuah perusahaan bernama Android Inc. didirikan oleh Andy Rubin, Rich Miner, Nick Sears, dan Chris White di Palo

Alto, California. Awalnya, Android dikembangkan sebagai sistem operasi untuk kamera digital, namun kemudian fokusnya bergeser ke pengembangan sistem operasi untuk telepon pintar karena pasar kamera digital dianggap kurang besar. Pada tahun 2005, *Google* mengakuisisi Android Inc. dan mulai mengembangkan sistem operasi ini berbasis kernel Linux dengan tujuan menyediakan *platform* terbuka dan fleksibel untuk perangkat seluler.

Pada 5 November 2007, Google bersama beberapa perusahaan teknologi membentuk *Open Handset Alliance* untuk mengembangkan dan mempromosikan Android sebagai sistem operasi *open source*. Peluncuran ponsel Android pertama, *T-Mobile G1 (HTC Dream)*, terjadi pada 22 Oktober 2008. Sejak saat itu, Android terus mengalami perkembangan pesat dan menjadi sistem operasi paling populer di dunia untuk perangkat seluler, bahkan melampaui iOS pada tahun 2012.

Android juga dikenal dengan penamaan versi-versinya berdasarkan nama makanan manis secara alfabetis, seperti *Cupcake* (1.5), *Donut* (1.6), hingga *Pie* (9.0). Namun setelah versi 9, *Google* mengganti penamaan menjadi angka saja, misalnya Android 10 dan seterusnya.

Bahasa pemograman memiliki dua bahasa yaitu, java dan kotlin. Java adalah bahasa pemograman utama yang digunakan untuk pengembangan aplikasi Android. Sedangkan Kotlin adalah bahasa pemograman modern yang juga didukung oleh Android dan semakin popular di kalangan pengembang.

2.3.2 Perkembangan Versi Android

Perkembangan versi *Android* dimulai dari peluncuran versi pertama, Android 1.0,pada tahun 2008 yang membawa fitur dasar seperti integrasi *Gmail, Google Maps*, dan *browser web*. Pada tahun berikutnya, Android mulai menggunakan penamaan versi berdasarkan nama makanan manis, dimulai dengan *Android* 1.5 *Cupcake* yang menambahkan fitur seperti *keyboard virtual* dan widget layar utama. Versi-versi selanjutnya seperti *Donut, Eclair*, dan *Froyo* terus memperbaiki performa dan menambah fitur seperti navigasi *turn-by-turn* dan dukungan multi-akun.

Pada tahun 2014, Android 5.0 *Lollipop* memperkenalkan desain Material *Design* yang memberikan tampilan lebih modern dan mendukung fitur *multi-window*. Versi 6.0 *Marshmallow* menambahkan fitur keamanan seperti sensor sidik jari dan pengelolaan baterai yang lebih efisien. Android 7.0 *Nougat* meluncurkan mode *split-screen* dan peningkatan notifikasi, sedangkan Android 8.0 *Oreo* membawa fitur *picture-in-picture* dan *autofill API*.

Setelah *Android* 9 *Pie*, *Google* mengganti penamaan versi menjadi angka saja, dimulai dari *Android* 10 yang memperkenalkan mode gelap, hingga Android 15 yang dirilis pada 2024 dengan fokus pada peningkatan personalisasi dan *multitasking*. Setiap versi *Android* terus menghadirkan inovasi untuk meningkatkan pengalaman pengguna dan performa perangkat.

2.3.3 Android Virtual Device (AVD)

Android Virtual Device (AVD) adalah sebuah alat yang memungkinkan pengembang untuk menjalankan dan menguji Android secara virtual di komputer

tanpa harus menggunakan perangkat fisik seperti *smartphone* atau tablet. AVD perangkat Android asli, sehingga pengembang dapat melihat bagaimana aplikasi berjalan di berbagai tipe dan versi perangkat. Dengan menggunakan AVD, proses pengujian aplikasi menjadi lebih praktis dan fleksibel karena bisa dilakukan langsung dari komputer.

Gambar 2.2 Android Virtual Device (AVD)

2.3.4 Java Development Kit (ADV)

Java Development Kit (JDK) adalah paket perangkat lunak yang berisi berbagai alat penting untuk membuat, mengompilasi, dan menjalankan program berbasis bahasa pemrograman Java. Di dalam JDK terdapat komponen utama seperti Java Runtime Environment (JRE) yang memungkinkan aplikasi Java berjalan, compiler untuk mengubah kode sumber menjadi kode yang bisa dijalankan oleh mesin virtual java, serta berbagai pustaka dan alat bantu lain seperti debugger dan dokumentasi otomatis. Java Development Kit merupakan alat utama yang digunakan oleh para pengembang untuk membangun aplikasi java di berbagai platform, karena menyediakan semua kebutuhan mulai dari penulisan kode hingga pengujian dan peluncuran aplikasi.

2.3.5 Android Software Development Kit) (SDK)

Android Software Development Kit (SDK) adalah kumpulan alat dan pustaka yang digunakan oleh pengembang untuk membuat aplikasi Android. SDK ini menyediakan berbagai komponen penting seperti API, emulator untuk menguji aplikasi tanpa perangkat fisik, alat debugging untuk menemukan dan memperbaiki kesalahan, serta alat untuk membangun dan menyiapkan aplikasi agar siap dirilis. Dengan Android SDK, pengembang dapat menulis, menguji, dan mengoptimalkan aplikasi agar kompatibel dengan berbagai versi Android secara lebih mudah dan efisien.

2.4 *XAMPP*

Xampp adalah perangkat lunak open-source yang dapat diinstal di berbagai sistem operasi seperti Windows, Linux, dan macOs. Xampp dirancang untuk mempermudah pengembangan dalam menginstal dan mengkonfigurasi server web Apache beserta komponen komponen yang lain tanpa adanya kesulitan. Xampp memiliki fungsi sebagai server web local, memungkinkan pengguna untuk menguji dan mengembangkan aplikasi web secara offline.

Gambar 2.3 XAMPP

2.5 Android Studio

Menurut Sari, S.P., dan Prabowo, H. (2020), Android adalah sistem operasi yang menyediakan platform terbuka bagi para pengembang untuk membuat, mengubah, mengembangkan, dan menyebarluaskan aplikasi sehingga memungkinkan pengembangan aplikasi sendiri. Penggunaan media berbasis Android dapat memberikan inovasi baru dalam belajar, menumbuhkan minat, meningkatkan motivasi, dan rangsangan fitur-fitur *Android* Studio *Android* studio memiliki beberapa fitur, sebagai berikut:

- 1. Editor kode, adalah editor yang canggih dengan fitur seperti penyelesaian otomatis, penyorotan sintaks, dan *refactoring*.
- 2. Integrasi dengan Git, untuk mempermuda pengelolaan versi kode sumber.
- 3. Desain antarmuka, untuk menyediakan alat desain visual untuk membuat antarmuka pengguna (UI) dengan *drag-and-drop*.
- 4. Emulator, memungkinkan pengembang untuk menguji aplikasi di berbagai perangkat virtual tanpa memerlukan perangkat fisik.
- 5. Alat profiling untuk membantu dalam menganalisis kinerja aplikasi dan penggunaan sumber daya.

2.5.1 Komponen-komponen Android Studio

Selain fitur- fitur Android studio, Android studio memiliki beberapa komponen sebagai berikut:

- Plugin dan Ekstensi adalah Android Studio yang mendukung berbagai plugin yang dapat memperluas fungsionalitas IDE. Pengembang dapat menambahkan alat tambahan sesuai kebutuhan proyek mereka.
- Manajemen proyek adalah Android Studio yang menyediakan struktur proyek yang terorganisir, memudahkan pengembang dalam mengelola file dan sumber daya aplikasi.
- 3. Integrasi dengan Firebase adalah Android Studio memungkinkan integrasi yang mudah dengan Firebase, platform pengembangan aplikasi yang menyediakan berbagai layanan seperti analitik, autentikasi, dan penyimpanan data.
- 4. Dukungan Multibahasa, selain java dan kotlin, Android studio juga mendukung pengembangan aplikasi menggunakan bahasa pemrograman lain, seperti C++ melalui Android NDK (Native Development Kit).
- 5. Alat Pengujian yaitu Android studio yang dilengkapi dengan alat untuk pengujian unit dan pengujian fungsional, seperti *Espresso* dan *JUnit*, yang membantu memastikan kualitas aplikasi.

Gambar 2.4 Android Studio

2.5.2 Aspek Penting dalam Android Studio di Luar Komponen UI

Android studio tidak hanya tentang menyusun tampilan aplikasi (komponen *UI*). Aspek penting lainnya seperti:

- 1. Arsitektur aplikasi, menentukan bagaimana kode terstrukturdan data yang dikelola (misalnya menggunakan MVVM atau MVP).
- 2. Manajemen Proyek, meliputi pengaturan file, dan proses build.
- 3. *Debugging* dan Pengujian, krusial untuk menentukan dan memperbaiki *bug* serta memastikan kualitas aplikasi.
- 4. Integrasi dengan Layanan Eksternal, seperti *Firebase* atau Google Maps memperluas fungsional.
- Gradle , yaitu sistem build Android yang perlu dipahami untuk mengelola dependendi Dn konfigurasi.
- 6. Kontrol Versi, misalnya *Git* penting untuk kolaborasi tim dan manajemen kode.
- Optimasi Performa dan Penerbitan Aplikasi, yang dilakukan ke Google
 Play Store untuk melengkapi siklus pengembangan.

 Semua aspek ini sama pentingnya dengan komponen visual dalam

2.6 MySQL (My Structured Query Langue)

membangun aplikasi Android Studio.

MySQL adalah salah satu sistem manajemen basis data relasional (Relational Database Management System/RDBMS) yang bersifat open source. MySQL

digunakan untuk mengelola, menyimpan, dan memanipulasi data yang terhubung dengan aplikasi berbasis web. (Indriani et al., 2022)

MySQL tersedia dalam dua jenis lisensi, yaitu lisensi perangkat lunak bebas (*Free Software*) dan *lisensi shareware* yang memiliki batasan penggunaan. Hal ini memungkinkan MySQL dipakai secara gratis untuk keperluan pribadi maupun komersial tanpa harus membayar lisensi, sehingga sangat populer di kalangan pengembang aplikasi web dan sistem berbasis data

Secara umum, MySQL banyak digunakan untuk berbagai keperluan seperti data warehousing, e-commerce, aplikasi logging, dan pengembangan aplikasi web dinamis, terutama yang dikombinasikan dengan bahasa pemrograman seperti PHP untuk membuat aplikasi berbasis database yang interaktif dan responsive.

2.6.1 UML (Unified Modeling Language)

Berikut ini merupakan definisi UML (*Unified Modeling Language*) dari beberapa ahli, diantaranya sebagai berikut:

- Menurut Ronal et al. (2022), UML adalah alat untuk memvisualisasikan dan mendokumentasikan hasil analisa dan desain sistem secara visual, yang berisi sintaks untuk memodelkan sistem software berbasis objek.
- 2. Nurulfikri (Jurnal Informatika Terpadu, 2024), UML adalah bahasa pemodelan grafis yang menjadi standar untuk memodelkan sistem dengan metodologi pemodelan berorientasi objek. UML distandarkan oleh *Object Management Group* (OMG) dan pertama kali dipopulerkan oleh *Grady Booch, James Rumbaugh*, dan *Ivar Jacobson*. UML memiliki empat fungsi

utama: *virtualizing* (alat komunikasi antar tim pengembang), *specifying* (memodelkan sistem secara tepat), *constructing* (memetakan model ke bahasa pemrograman), dan *documenting* (dokumentasi sistem).

UML sering digunakan dalam berbagai konteks pengembangan sistem, seperti pembuatan aplikasi data penduduk, sistem pelayanan administrasi, dan pengembangan sistem informasi laboratorium, dengan tujuan meningkatkan efisiensi dan efektivitas pengelolaan data serta meminimalisir kesalahan informasi. UML juga menjadi alat bantu dalam metode pengembangan sistem seperti *Rational Unified Process* (RUP) yang terdiri dari beberapa fase mulai dari identifikasi kebutuhan hingga pengujian sistem.

2.6.2 Use Case Diagram

Use Case Diagram merupakan berfungsi menyatakan interaksi pengguna dengan sistem secara visual dan menyajikan seluruh fungsi sistem yang tersedia

Menurut (*Ejournal*, n.d.)(*Ejournal*, n.d.)

Simbol	Nama	Keterangan	
1	Aktor	Aktor merupakan Entitas yang berinteraksi dengan sistem, seperti "Guru", "Siswa", dan "Admin".	
	Use Case	Fungsi atau layanan yang ditawarkan oleh sistem, seperti "Menandai Kehadiran", "Liha Laporan Kehadiran", "Kelola Data Siswa", dan "Menghasilkan Laporan".	
	Association	Garis yang menghubungkan aktor dengan use case, menunjukkan interaksi antara keduanya.	
	Include	Include adalah sebuah hubungan yang menunjukkan suatu proses (use case) yang selalu membutuhkan dan memanggil proses lain setiap kali dijalankan.	
	Generalization	Generalization merupakan hubungan antara 2 use case atau 2 aktor di mana 1 elemen (anak) mewarisi sifat, perilaku, dan struktur dari elemen lain yang lebih umum (induk).	

Gambar 2.5 Simbol *Use Case* Diagram

2.6.3 Sequence Diagram

Sequence Diagram merupakan diagram yang digunakan untuk menggambarkan interaksi antar objek dalam sebuah sistem secara berurutan dan terinci, menampilkan pesan atau perintah yang akan dikirim beserta dengan waktu pelaksanaannya. Diagram ini memiliki dua dimensi yaitu, vertikal yang menunjukkan waktu dan horizontal yang menunjukkan objek atau aktor yang terlibat. Setiap objek memiliki *lifeline* yang menggambarkan

waktu aktifnya, dan interaksi antar objek ditunjukkan dengan panah pesan dari satu *lifeline* ke *lifeline* lainnya.

Sequence Diagram biasanya digunakan untuk memvisualisasikan urutan langkah dalam suatu proses sebagai respons terhadap suatu kejadian, sehingga menggambarkan interaksi antar objek dalam suatu proses berdasarkan urutan waktu. (Tiga et al., 2021)

Simbol	Nama	Keterangan		
7	Aktor	Aktor merupakan Entitas yang berinteraksi dengan sistem, seperti "Guru", "Siswa", dan "Admin".		
	Lifeline	Lifine berfungsi menggambarkan keberadaan sebuah objek dalam basis waktu.		
	Message	Menggambarkan sebuah komunikasi antar objek.		
Object	Object (Partisipan)	Object merupakan <i>intance</i> dari sebuah <i>class</i> yang dituliskan secara tersusun dan horizontal.		
	Activation	Activation berfungsi untuk menggambarkan tempat mulai dan berakhirnya pesan.		

Gambar 2.6 Simbol Sequence Diagram

2.6.4 Activity Diagram

Activity Diagram adalah salah satu jenis diagram dalam UML yang biasanya digunakan untuk memodelkan alur kerja (workflow) atau aktivitas dalam suatu sistem. Diagram ini memperlihatkan urutan aktivitas, keputusan, serta kondisi yang

terjadi selama proses berlangsung, sehingga sangat efektif untuk mendokumentasikan proses bisnis atau prosedur dalam pengembangan perangkat lunak. (Puturuhu, 2022)

Simbol	Nama	Fungsi	
	Initial State	Sebuah diagram yang memiliki status awal.	
Nama Aktivitas	Activity	Sebuah aktivitas yang dilakukan oleh sistem, aktivitas biasanya diawali dengan kata kerja.	
	Join/Percabangan	Percabangan yang dimana ada pilihan aktivitas yang lebih dari 1.	
	Final State	Status akhir yang dilakukan oleh sistem.	

Gambar 2.7 Activity Diagram(Intern, 2021)

2.6.5 Class Diagram

Class Diagram merupakan salah satu jenis diagram struktur pada Unified Modeling Language (UML) yang digunakan untuk menggambarkan struktur sistem secara statis, termasuk deskripsi kelas, atribut, metode, serta hubungan antar kelas dalam suatu sistem(Ramdany, 2024).

Simbol	Nama	Fungsi
nama_kelas +atribut +operasi()	Tabel	Simbol ini adalah untuk sebuah kelas pada struktur sistem. Penulisan tidak diperbolehkan menggunakan spasi. Simbol memiliki 3 susunan, yaitu kotak pertama nama kelas, kotak kedua atribut dan kotak terakhir operasi.
	Generalization	Generalization digunakan untuk menghubungkan kelas dengan arti umum-khusus. Jadi jika ada kelas yang memiliki makna kelas umum dan makna kelas khusus dapat menggunakan simbol ini.

Gambar 2.8 Class Diagram

2.7 Penelitian Terdahulu

Peneliti	Judul	Metode	Temuan	Relevansi	Referensi
& Tahun	Penelitian	Penelitian	Penting		
Puspa, A.,	Pengembangan	Research and	Aplikasi	Penelitian ini	Puspa, A.,
Ramadhani	Aplikasi	Development	absensi ini	serupa dalam	Ramadhani,
, R., &	Absensi	(R\&D)	berhasil	penggunaan	R., &
Setiawan,	Berbasis	dengan	dikembangkan	Android	Setiawan, D.
D. (2023)	Android dengan	pendekatan	menggunakan	Studio dan	(2023).
	Android Studio	kualitatif.	Android	konteks	Pengembangan
			Studio,	pendidikan,	Aplikasi
			memberikan	sehingga dapat	Absensi
			kemudahan	dijadikan	Berbasis
			bagi pihak	referensi teknis	Android
			sekolah dalam	dan konseptual	dengan
			mengelola	untuk	Android
			kehadiran	Pengembangan	Studio. Jurnal
			siswa dan	Aplikasi	Teknik
			mempercepat	Absensi	Informatika
			laporan	Berbasis	dan Sistem

			absensi.	Android di SD	Informasi,
				Mis	11(1), 31–40.
				Baiturrahman	
				Labuhanbatu	
				Selatan.	
Sahrir, S.,	Pengembangan	R\&D dengan	Aplikasi	Menjadi	Sahrir, S., &
&	Aplikasi	pendekatan	berhasil	referensi	Thamrin, A. N.
Thamrin,	Absensi	prototyping	digunakan	dalam	(2024).
A. N.	Mahasiswa	dan uji black-	dengan baik,	menambahkan	Pengembangan
(2024)	Realtime	box serta	memberikan	fitur real-time	Aplikasi
	Menggunakan	validasi	fitur notifikasi	dan notifikasi	Absensi
	SMS Gateway	pengguna.	kehadiran	dalam sistem	Mahasiswa
	Berbasis		secara real-	absensi	Realtime
	Android		time melalui	Android di	Menggunakan
			SMS, dan	lingkungan	SMS Gateway
			mendapat	pendidikan.	Berbasis
			respons positif		Android.
			dari pengguna.		Jurnal
					Manajemen
					Informatika
					(JMP), 9(1),
					55–62.
Fawwazi,	Rancang	Agile software	Aplikasi	Relevan dari	Fawwazi, N.,
N., &	Bangun	development	berhasil	sisi metode	& Hidayat, M.
Hidayat,	Aplikasi	dengan uji	dibangun	pengembangan	(2023).
M. (2023)	Kehadiran	kelayakan	dalam	perangkat	Rancang
	Asisten	pengguna.	beberapa	lunak (Agile)	Bangun
	Praktikum		sprint, dan	dan	Aplikasi
	Menggunakan		hasil evaluasi	implementasi	Kehadiran

	Metode Agile.		menunjukkan	Android dalam	Asisten
			tingkat	lingkungan	Praktikum
			kepuasan	pendidikan.	Berbasis
			pengguna di		Android
			atas 90%.		Menggunakan
					Metode Agile.
					Jurnal Misi,
					9(2), 134–141.
Sufandi,	Pengembangan	Metode	Aplikasi	Dapat	Sufandi, S.,
S.,	Aplikasi	Waterfall,	meningkatkan	dijadikan	Siswanto, S.,
Siswanto,	Presensi	dengan	akurasi dan	referensi untuk	& Hasan, H.
S., &	Berbasis	implementasi	transparansi	mengembangk	(2022).
Hasan, H.	Android dan	GPS dan	dalam	an fitur	Pengembangan
(2022)	Web di	dokumentasi	pencatatan	validasi	Aplikasi
	Politeknik	foto sebagai	kehadiran	berbasis lokasi	Presensi
	Negeri	bukti	karena	atau gambar	Berbasis
	Pontianak	kehadiran.	verifikasi	dalam sistem	Android dan
			dilakukan	absensi di	Web di PNP.
			melalui GPS	sekolah dasar.	Jurnal
			dan foto.		Pendidikan
					Informatika
					dan Sains,
					11(1), 22–29.
Ramdany,	Desain Class	Studi	Penggunaan	Bermanfaat	Ramdany, D.
D. (2021)	Diagram dalam	deskriptif	class diagram	dalam tahap	(2021). Desain
	Aplikasi <i>Mobile</i>	dengan	yang tepat	perancangan	Class Diagram
	Sekolah	pendekatan	membantu	sistem absensi,	dalam Aplikasi
		rekayasa	dalam	terutama pada	Mobile
		perangkat	mempercepat	bagian desain	Sekolah. Jurnal

lunak berbasis	proses	class diagram.	Rekayasa
UML.	pengembangan		Teknologi,
	aplikasi dan		7(2), 76–82.
	meminimalisir		
	kesalahan		
	database.		

2.8 Sejarah Singkat SD Mis Baiturrahman

Pendidikan Dasar MIS BAITURRAHMAN, yang berdiri sejak 0000-00-00, merupakan lembaga pendidikan dasar tingkat MI yang berstatus Swasta, dan berada di bawah pembinaan Kementerian Pendidikan, Kebudayaan, Riset, dan Teknologi. Sekolah ini melayani pendidikan formal bagi anak-anak di wilayah Kec. Torgamba, dengan fokus utama pada penguatan literasi, numerasi, serta pembentukan karakter yang berbasis pada Profil Pelajar Pancasila.

Dalam menjalankan kegiatan belajar mengajar, Mis Baiturrahman Labuhanbatu Selatan menerapkan pendekatan pembelajaran aktif, kreatif, dan menyenangkan. Kurikulum yang digunakan memungkinkan siswa untuk belajar sesuai dengan tahap perkembangannya, serta menumbuhkan minat dan bakat secara optimal.

Beragam kegiatan ekstrakurikuler juga disediakan sebagai media pengembangan diri siswa, seperti pramuka, seni, olahraga, serta kegiatan sosial yang membangun empati dan kepedulian terhadap sesama.

Seiring waktu, Mis Baiturrahman Labuhanbatu Selatan telah melahirkan lulusanlulusan yang tidak hanya berprestasi secara akademik, tetapi juga memiliki kepribadian yang baik dan siap menghadapi tantangan di jenjang pendidikan berikutnya. Dengan komitmen untuk terus meningkatkan mutu pendidikan, sekolah ini menjadi pilihan terpercaya masyarakat Kec. Torgamba dalam menyekolahkan anak-anak mereka.