SINTA FITRIANI, NPM 2109500159 (2025) SISTEM PENDUKUNG KEPUTUSAN UNTUK KELAYAKAN KREDIT BERDASARKAN PROFIL KEUANGAN MENGGUNAKAN METODE TOPSIS. Tugas_Akhir(Artikel) Building of Informatics, Technology and Science (BITS), 7 (1). pp. 572-583. ISSN 2685-3310 (e-ISSN) 2684-8910 (p-ISSN)
![]() |
Text
COVER.pdf Download (1MB) |
![]() |
Text
ARTIKEL.pdf Download (780kB) |
Abstract
Sistem Pendukung Keputusan (SPK) merupakan salah satu alat penting dalam membantu proses pengambilan keputusan yang kompleks, termasuk dalam penilaian kelayakan kredit berdasarkan profil keuangan nasabah. Penelitian ini bertujuan merancang SPK yang mampu mengevaluasi kelayakan kredit secara lebih akurat, objektif, dan efisien dengan menggunakan metode TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). Metode ini digunakan untuk menentukan peringkat alternatif nasabah berdasarkan kedekatan dengan solusi ideal, dengan mempertimbangkan beberapa kriteria seperti pendapatan, pengeluaran, jaminan, dan riwayat kredit. Data yang digunakan dalam penelitian ini bersumber dari dataset keuangan nasabah yang mencakup informasi terkait profil finansial masing-masing. Sistem diuji menggunakan data simulasi dan hasilnya menunjukkan bahwa metode TOPSIS dapat memberikan hasil evaluasi kelayakan kredit dengan tingkat akurasi yang tinggi serta mampu mengurangi waktu dan kesalahan dibandingkan metode manual. Hasil akhir penelitian menunjukkan alternatif terbaik adalah A3 dengan nilai skor 0,8859, yang berarti memiliki tingkat kelayakan kredit paling optimal. Temuan ini diharapkan dapat menjadi referensi bagi lembaga keuangan dalam pengambilan keputusan pemberian kredit, meningkatkan transparansi, serta meminimalisasi risiko dalam proses kredit. Implementasi metode TOPSIS terbukti efektif dalam mendukung keputusan berbasis data. Kata Kunci: Sistem Pendukung Keputusan, Kelayakan Kredit, Profil Keuangan, Metode TOPSIS ================================================================================================ Decision Support System (DSS) is one of the essential tools in assisting complex decision-making processes, including creditworthiness assessment based on customers’ financial profiles. This study aims to design a DSS capable of evaluating credit eligibility more accurately, objectively, and efficiently by applying the TOPSIS (Technique for Order Preference by Similarity to Ideal Solution) method. This method is used to rank customer alternatives based on their proximity to an ideal solution by considering several criteria such as income, expenses, collateral, and credit history. The data used in this research were obtained from customer financial datasets containing information related to their financial profiles. The system was tested using simulation data, and the results showed that the TOPSIS method can provide creditworthiness evaluations with a high level of accuracy while reducing time and errors compared to manual assessment methods. The final research results identified the best alternative as A3 with a score of 0.8859, indicating the most optimal credit eligibility level. These findings are expected to serve as a valuable reference for financial institutions in making credit approval decisions, improving transparency, and minimizing risks in the credit process. The implementation of the TOPSIS method has proven to be an effective approach in supporting data-driven decision making. Keywords: Decision Support System; Creditworthiness; Financial Profile; TOPSIS Method
Item Type: | Article |
---|---|
Uncontrolled Keywords: | Sistem Pendukung Keputusan, Kelayakan Kredit, Profil Keuangan, Metode TOPSIS==============Decision Support System, Creditworthiness, Financial Profile, TOPSIS Method |
Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science T Technology > T Technology (General) Z Bibliography. Library Science. Information Resources > Z665 Library Science. Information Science Z Bibliography. Library Science. Information Resources > ZA Information resources > ZA4050 Electronic information resources Z Bibliography. Library Science. Information Resources > ZA Information resources > ZA4450 Databases |
Divisions: | Fakultas Sains Dan Teknologi > Sistem Informasi |
Depositing User: | Unnamed user with email repository@ulb.ac.id |
Date Deposited: | 22 Oct 2025 07:34 |
Last Modified: | 22 Oct 2025 07:34 |
URI: | http://repository.ulb.ac.id/id/eprint/1836 |
Actions (login required)
![]() |
View Item |