
BAB III METODOLOGI PENELITIAN

3.1. Metode Penelitian

Metode penelitian yang digunakan dalam penelitian ini adalah metode *Data* mining dengan algoritma *K-Means* untuk melakukan pengelompokan kawasan pemukiman berdasarkan kelayakan hunian [24]. Tahapan penelitian dimulai dengan pengumpulan data terkait faktor-faktor yang mempengaruhi kelayakan hunian, seperti aksesibilitas, ketersediaan fasilitas umum, kondisi infrastruktur, dan aspek lingkungan. Data yang diperoleh kemudian melalui proses pra-pemrosesan, termasuk pembersihan data, normalisasi, dan transformasi agar siap untuk dianalisis. Setelah itu, algoritma *K-Means* diterapkan dengan menentukan jumlah *Cluster* yang optimal menggunakan metode evaluasi seperti Elbow Method atau Silhouette Score [25].

3.2. Kerangka Kerja Penelitian

Pada penelitian ini terdapat kerangkan kerja penelitian yang dirancang dengan menggunakan Flowchart yaitu sebagai berikut.

Gambar 3. 1. Flowchart

- Mulai, Tahapan awal yang menandai dimulainya proses penelitian. Pada tahap ini, peneliti menentukan tujuan dan ruang lingkup penelitian serta menyiapkan segala kebutuhan teknis, termasuk perangkat lunak dan data yang akan dianalisis.
- 2. Pengumpulan Data, Pada tahap ini, data yang dibutuhkan untuk penelitian dikumpulkan dari sumber yang telah ditentukan, misalnya melalui survei, dokumen instansi, atau data sekunder yang relevan. Data yang dikumpulkan mencakup atribut-atribut penting seperti jenis kelamin, aksesibilitas infrastruktur, dan kondisi sosial ekonomi.
- 3. Preprocessing Data, Tahapan ini bertujuan untuk menyiapkan data agar layak digunakan dalam proses analisis. Dalam konteks penelitian ini, karena data sudah cukup rapi, proses preprocessing hanya melibatkan transformasi data dari bentuk kategorikal menjadi numerikal untuk memudahkan pengolahan oleh algoritma K-Means.
- 4. Perancangan Model Cluster, Pada tahap ini dilakukan proses perancangan dan penerapan algoritma clustering, dalam hal ini menggunakan metode K-Means. Model diuji dengan dua variasi jumlah *Cluster*, yaitu K = 3 dan K = 5, untuk mengetahui struktur pengelompokan yang paling optimal.
- 5. Hasil Cluster, Tahap ini menyajikan hasil dari proses clustering, yaitu pengelompokan data ke dalam *Cluster-Cluster* tertentu berdasarkan kemiripan karakteristik. Hasil ditampilkan dalam bentuk tabel yang mencantumkan setiap individu beserta *Cluster* yang dihasilkannya untuk masing-masing nilai K.
- 6. Hasil Evaluasi, Pada tahapan ini dilakukan evaluasi terhadap model clustering yang telah dibuat, menggunakan metrik seperti Average Within Centroid

- Distance. Evaluasi ini membantu menilai seberapa baik data terkelompok dalam masing-masing *Cluster* dan menentukan model mana yang lebih efektif.
- 7. Selesai, Merupakan tahapan akhir dari proses penelitian. Setelah hasil diperoleh dan dianalisis, peneliti dapat menyusun kesimpulan dan saran berdasarkan temuan yang diperoleh untuk keperluan akademik maupun implementasi praktis.

3.3. Lokasi dan Waktu Penelitian

3.3.1. Lokasi Penelitian

Penelitian ini dilakukan di Dinas Perumahan dan Kawasan Permukiman yang bertanggung jawab dalam perencanaan dan pengelolaan hunian layak. Data yang dikumpulkan mencakup faktor-faktor kelayakan permukiman untuk dianalisis menggunakan algoritma *K-Means*.

3.3.2. Waktu Penelitian

Berdasarkan penelitian yang akan dilakukan, terdapat waktu penelitian yang akan dilakukan pada penelitian ini yaitu sebagai berikut.

Bulan Nama Maret Juli No Desember Februari Juni Kegiatan 2 3 2 3 3 3 4 1 2 3 4 1 2 4 1 4 1 2 Pengumpulan 1 data Pra-2 pemrosesan data Pemilihan 4 fitur Penentuan jumlah 5 Cluster optimal Penerapan algoritma K-6 Means

Tabel 3. 1. Waktu Penelitian

7	Analisis hasil Clustering										
8	Evaluasi kualitas <i>Cluster</i>										
9	Interpretasi hasil										
10	Penyusunan laporan penelitian										

3.4. Alat dan Bahan Penelitian

Penelitian ini menggunakan beberapa alat, yaitu alat tulis untuk pencatatan, handphone untuk dokumentasi serta laptop sebagai perangkat utama dalam analisis data. Aplikasi yang digunakan meliputi Microsoft Word untuk penyusunan laporan, Microsoft Excel untuk pengolahan data awal, RapidMiner untuk proses *Clustering*, dan Snipping Tool untuk menangkap tampilan hasil analisis.

3.5. Populasi dan Sampel Penelitian

Populasi dalam penelitian ini adalah Dinas Perumahan dan Kawasan Permukiman, sementara sampelnya difokuskan pada kawasan permukiman di Rantauprapat. Data dari wilayah ini digunakan untuk menganalisis kelayakan hunian dengan metode *K-Means*, guna mengelompokkan permukiman berdasarkan karakteristik tertentu.

3.6. Teknik Pengumpulan Data

Pada proses pengumpulan data, terdapat 2 metode yang digunakan yaitu sebagai berikut.

 Observasi dilakukan dengan mengamati langsung kondisi kawasan permukiman di Rantauprapat untuk menilai faktor-faktor yang mempengaruhi kelayakan hunian, seperti infrastruktur, aksesibilitas, dan fasilitas umum. Pengamatan ini bertujuan untuk memperoleh data faktual yang mendukung analisis dalam Penelitian [26].

2. Wawancara dilakukan dengan pihak Dinas Perumahan dan Kawasan Permukiman untuk mendapatkan informasi mendalam mengenai kebijakan, program, serta kriteria kelayakan hunian yang diterapkan [27].

3.7. Teknik Analisis Data

Teknik analisis data dalam penelitian ini menggunakan aplikasi RapidMiner untuk menentukan nilai *Cluster* dengan algoritma *K-Means*. Data yang telah diproses dimasukkan ke dalam RapidMiner, di mana jumlah *Cluster* optimal ditentukan menggunakan metode evaluasi seperti Elbow Method [28]. Hasil *Clustering* kemudian dianalisis untuk mengidentifikasi pola dan karakteristik masing-masing kelompok permukiman berdasarkan kelayakan huniannya [29].

3.8. Perhitungan Data

3.8.1. Pengumpulan Data

Tahapan pengumpulan data merupakan langkah awal yang dilakukan dalam penelitian ini dengan tujuan untuk mengumpulkan informasi yang akan dijadikan dasar dalam proses analisis. Data yang digunakan dalam penelitian ini berjumlah sebanyak 10 data, yang masing-masing merepresentasikan objek permukiman berdasarkan tiga variabel utama, yaitu infrastruktur dasar, aksesibilitas, dan kondisi sosial ekonomi. Seluruh data tersebut kemudian digunakan dalam proses clustering guna mengelompokkan kawasan permukiman berdasarkan kemiripan karakteristiknya.

Tabel 3. 2. Data Sampel Penelitian

Nama	Jenis Kelamin	Aksesibilit as Infrastruk tur	Kondis i Sosial Ekono mi	NIK	Alamat	Tipe Bangu nan	Jalan
Adrian Putra	Laki-Laki	Sangat Baik	Sedang	1213076592 183740	Padang Matinggi	42	Beton
Bayu Kurnia wan	Laki-Laki	Baik	Tinggi	1218927365 012640	Padang Matinggi	36	Beton
Candr a Wijay a	Laki-Laki	Sangat Baik	Tinggi	1211763928 471520	Padang Matinggi	42	Beton
Denny Praset yo	Laki-Laki	Baik	Rendah	1213647859 206170	Padang Matinggi	42	Beton
Evan Saputr a	Laki-Laki	Kurang Baik	Rendah	1215782039 461580	Padang Matinggi	42	Beton
Farhan Maula na	Laki-Laki	Sangat Baik	Sedang	1219056217 483200	Padang Matinggi	42	Beton
Gilang Rama dhan	Laki-Laki	Sangat Baik	Tinggi	1214398271 059860	Padang Matinggi	42	Beton
Hendr a Setiaw an	Laki-Laki	Sangat Baik	Tinggi	1216283741 905270	Padang Matinggi	42	Beton
Iqbal Perma na	Laki-Laki	Sangat Baik	Sedang	1213195628 471090	Padang Matinggi	42	Beton
Junaid i Akbar	Laki-Laki	Baik	Tinggi	1217946352 184060	Padang Matinggi	36	Beton

Pada tabel diatas merupakan data sampel yang akan digunakan pada penelitian ini. Data diatas merupakan data yang diperoleh dari dinas Perumahan dan Kawasan Pemukiman.

3.8.2. Preprocessing Data

Pada tahapan preprocessing data pada penelitian ini merupakan tahapan yang dilakukan untuk merubah data sampel di konversi pada bilangan numerikal. Untuk keterangan data konversinya yaitu sebagai berikut.

Tabel 3. 3. Data Keterangan Atribut

Atribut	Partisi	Nilai
Aksebilitas	Sangat Baik	5
Infrastruktur	Baik	3
IIIIIastiuktui	Kurang Baik	2
V 1:-: C:-1	Tinggi	50
Kondisi Sosial Ekonomi	Sedang	30
EKOHOHH	Rendah	20

Pada tabel diatas merupakan data keterangan yang digunakan sebagai keterangan untuk data yang dikonversi pada penelitian ini. Untuk data yang sudah dikonversi yang itu sebagai berikut.

1. Aksebilitas Infrastruktur

Atribut ini mengacu pada kemudahan akses ke fasilitas umum seperti jalan, air bersih, listrik, sekolah, puskesmas, dan sarana lainnya. Tingkat aksebilitas menunjukkan seberapa mudah penghuni rumah menjalani kehidupan sehari-hari secara fungsional.

Partisi	Nilai	Penjelasan
Sangat Baik	5	Rumah berada di lokasi strategis, dekat jalan utama, mudah dijangkau kendaraan umum, tersedia fasilitas lengkap.
Baik	3	Rumah cukup mudah dijangkau, fasilitas dasar tersedia, tapi belum seideal "sangat baik".
Kurang Baik	2	Rumah berada di lokasi sulit dijangkau, jauh dari fasilitas umum, akses jalan buruk atau sempit.

2. Kondisi Sosial Ekonomi

Atribut ini menilai tingkat kemampuan ekonomi dan kualitas hidup penghuni, termasuk penghasilan, pekerjaan, pendidikan, dan daya beli.

Partisi	Nilai	Penjelasan			
Tinggi	50	Penghuni memiliki penghasilan stabil, pekerjaan tetap, bisa memperbaiki atau membangun rumah dengan baik.			

Sedang	30	Penghuni mampu memenuhi kebutuhan pokok dan sebagian kebutuhan sekunder. Kondisi rumah cukup baik, namun terbatas.
Rendah	20	Penghasilan minim, pekerjaan tidak tetap, tidak mampu memperbaiki rumah, rawan tinggal di hunian tak layak.

Tabel 3. 4. Data Sampel Penelitian Sudah Dikonversi

Nama	Jenis Kelamin	Aksesi bilitas Infras truktu r	Kondis i Sosial Ekono mi	NIK	Alamat	Tipe Banguna n	Jalan
Adrian Putra	Laki-Laki	5	30	121307 659218 3740	Padang Matinggi	42	Beton
Bayu Kurniaw an	Laki-Laki	3	50	121892 736501 2640	Padang Matinggi	36	Beton
Candra Wijaya	Laki-Laki	5	50	121176 392847 1520	Padang Matinggi	42	Beton
Denny Prasetyo	Laki-Laki	3	20	121364 785920 6170	Padang Matinggi	42	Beton
Evan Saputra	Laki-Laki	2	20	121578 203946 1580	Padang Matinggi	42	Beton
Farhan Maulana	Laki-Laki	5	30	121905 621748 3200	Padang Matinggi	42	Beton
Gilang Ramadh an	Laki-Laki	5	50	121439 827105 9860	Padang Matinggi	42	Beton
Hendra Setiawa n	Laki-Laki	5	50	121628 374190 5270	Padang Matinggi	42	Beton
Iqbal Permana	Laki-Laki	5	30	121319 562847 1090	Padang Matinggi	42	Beton
Junaidi Akbar	Laki-Laki	5	30	121794 635218 4060	Padang Matinggi	36	Beton

3.8.3. Perhitungan Data

Untuk tahapan awal melakukan perhitungan pada metode K-Means Clustering yaitu menghitung centroid dari 3 data yang ada pada data sampel. Untuk menghitung data nya juga, yang akan diambil awalnya yaitu data pertama dan

kedua. Untuk proses perhitungan juga terdapat beberapa tahapan yaitu sebagai berikut.

$$d_{1}, 1 = \sqrt{(titik \ 1 \ di \ x1 - data \ 1 \ di \ x1)^{2} + (titik \ 1 \ di \ x2 - data \ 1 \ di \ x2)^{2}}$$

$$\sqrt{(titik \ 1 \ di \ x3 - data \ 1 \ di \ x3)^{2}}$$

$$d_{1}, 2 = \sqrt{(titik \ 2 \ di \ x1 - data \ 2 \ di \ x1)^{2} + (titik \ 2 \ di \ x2 - data \ 2 \ di \ x2)^{2}}$$

$$\sqrt{(titik \ 2 \ di \ x3 - data \ 2 \ di \ x3)^{2}}$$

$$d_{1}, 3 = \sqrt{(titik \ 3 \ di \ x1 - data \ 3 \ di \ x1)^{2} + (titik \ 3 \ di \ x2 - data \ 3 \ di \ x2)^{2}}$$

$$\sqrt{(titik \ 3 \ di \ x3 - data \ 3 \ di \ x3)^{2}}$$

Rumus yang kamu tulis di atas merupakan representasi dari perhitungan jarak Euclidean antara sebuah data dengan titik centroid cluster dalam algoritma K-Means. Jarak ini dihitung dengan mengukur perbedaan antara setiap nilai fitur (dalam hal ini X1, X2, dan X3) dari data terhadap nilai fitur yang sesuai pada centroid cluster. Misalnya, untuk menghitung jarak antara data ke-1 dengan centroid cluster-1 (d1,1), kita kurangkan nilai X1 data dengan X1 centroid, lalu kuadratkan hasilnya, dan lakukan hal yang sama untuk X2 dan X3, lalu jumlahkan semuanya dan akarnya diambil (akar kuadrat dari jumlah kuadrat perbedaan). Ini dilakukan untuk semua kombinasi data dengan centroid-cluster lainnya seperti d1,2 dan d1,3.

Perhitungan jarak ini penting karena menentukan sejauh mana suatu data "dekat" atau "mirip" dengan centroid dari sebuah cluster. Data akan dikelompokkan ke cluster yang memiliki jarak terkecil terhadap centroid-nya. Setelah seluruh data diklasifikasikan ke dalam cluster masing-masing, analisis seperti Average Within

Centroid Distance (AWCD) dapat dilakukan untuk mengukur seberapa padat (kompak) masing-masing cluster. Semakin kecil jaraknya, maka semakin baik kualitas pengelompokannya, karena menunjukkan bahwa anggota dalam cluster tersebut memiliki karakteristik yang lebih mirip satu sama lain.

Centroid 1 =
$$5, 30$$

Centroid 2 = $3, 50$
Centroid 3 = $5, 50$

Data 1 = 5, 30
d1, 1 =
$$\sqrt{(5-5)^2 + (30-30)^2}$$

= $\sqrt{(0)^2 + (0)^2}$
= $\mathbf{0}$
d1, 2 = $\sqrt{(5-3)^2 + (30-50)^2}$
= $\sqrt{(2)^2 + (-20)^2}$
= $\mathbf{20}$
d1, 3 = $\sqrt{(5-5)^2 + (30-50)^2}$
= $\sqrt{(0)^2 + (-20)^2}$
= $\mathbf{20}$

Data 2 = 3, 50
D2, 1 =
$$\sqrt{(3-5)^2 + (50-30)^2}$$

= $\sqrt{(-2)^2 + (20)^2}$
= 20
D2, 2 = $\sqrt{(5-5)^2 + (50-50)^2}$
= $\sqrt{(0)^2 + (0)^2}$
= 0

D2, 3 =
$$\sqrt{(3-5)^2 + (50-50)^2}$$

= $\sqrt{(-2)^2 + (0)^2}$
= 2

Data 3 = 5,50
d3, 1 =
$$\sqrt{(5-5)^2 + (30-50)^2}$$

= $\sqrt{(0)^2 + (-20)^2}$
= 20
d3, 2 = $\sqrt{(5-3)^2 + (50-50)^2}$
= $\sqrt{(2)^2 + (0)^2}$
= 2
d3, 3 = $\sqrt{(5-5)^2 + (50-50)^2}$
= $\sqrt{(0)^2 + (0)^2}$
= 0

C1			Centroid	
Cluster	X1	X2	X3	Kelompok
C1	0	20	20	1
C2	20	0	2	2
C3	20	2	0	3

Data
$$4 = 3, 20$$

 $d4, 1 = \sqrt{(3-5)^2 + (20-30)^2}$
 $= \sqrt{(-2)^2 + (-10)^2}$
 $= 10$
 $d4, 2 = \sqrt{(3-3)^2 + (20-50)^2}$
 $= \sqrt{(0)^2 + (-30)^2}$
 $= 30$
 $d4, 3 = \sqrt{(3-5)^2 + (20-50)^2}$
 $= \sqrt{(-2)^2 + (-30)^2}$
 $= 30$

C1			Centroid	
Cluster	X1	X2	X3	Kelompok
C4	10	30	30	1

Update Centroid

Centroid	X1	X2
d1	(5+3)/2 = 4	(30+20)/2 = 25

Data
$$5 = 2, 20$$

d5, $1 = \sqrt{(2-4)^2 + (20-25)^2}$
 $= \sqrt{(-2)^2 + (-5)^2}$
 $= 5$
d5, $2 = \sqrt{(2-3)^2 + (20-50)^2}$
 $= \sqrt{(-1)^2 + (-30)^2}$
 $= 30$
d5, $3 = \sqrt{(2-5)^2 + (20-50)^2}$
 $= \sqrt{(-3)^2 + (-30)^2}$
 $= 30$

C14	Centroid						
Cluster	X1	X2	X3	Kelompok			
C5	5	30	30	1			

Update Centroid

Centroid	X1	X2
dl	(4+2)/2 = 3	(20+25)/2 = 22

Data
$$6 = 5, 30$$

d6, $1 = (5-3)2 + (30-22)2$
 $= \sqrt{(2)^2 + (8)^2}$
 $= 8$

$$d6, 2 = \sqrt{(5-3)^2 + (30-50)^2}$$

$$= \sqrt{(2)^2 + (-20)^2}$$

$$= 20$$

d6, 3 =
$$\sqrt{(5-5)^2 + (30-50)^2}$$

= $\sqrt{(0)^2 + (-20)^2}$
= **20**

C14			Centroid	
Cluster	X1	X2	X3	Kelompok
С6	8	20	20	1

Update Centroid

Centroid	X1	X2	
d1	(3+5)/=4	(22+30)/2 = 26	

Data 7 = 5,50
d7, 1 =
$$\sqrt{(5-4)^2 + (50-26)^2}$$

= $\sqrt{(1)^2 + (24)^2}$
= 24
d7, 2 = $\sqrt{(5-3)^2 + (50-50)^2}$
= $\sqrt{(2)^2 + (0)^2}$
= 2
d7, 3 = $\sqrt{(5-5)^2 + (50-50)^2}$
= $\sqrt{(0)^2 + (0)^2}$
= 0

Cluster			Centroid	
	X1	X2	X3	Kelompok
C7	24	2	0	3

Update Centroid

Centroid	X1	X2
d3	(5+5)/2 = 5	(50+50)/2 = 50

Data 8 = 5, 50
d8, 1 =
$$\sqrt{(5-4)^2 + (50-26)^2}$$

$$= \sqrt{(1)^2 + (24)^2}$$

$$= 24$$

$$d8, 2 = \sqrt{(5-3)^2 + (50-50)^2}$$

$$= \sqrt{(2)^2 + (0)^2}$$

$$= 2$$

$$d8, 3 = \sqrt{(5-5)^2 + (50-50)^2}$$

$$= \sqrt{(0)^2 + (0)^2}$$

$$= 0$$

C1 4			Centroid	
Cluster	X1	X2	X3	Kelompok
C8	24	2	0	3

Update Centroid

Centroid	X1	X2
d3	(5+5)/2 = 5	(50+50)/2 = 50

Data 9 = 5, 30
d9, 1 =
$$\sqrt{(5-4)^2 + (30-26)^2}$$

= $\sqrt{(1)^2 + (4)^2}$
= 4
d9, 2 = $\sqrt{(5-3)^2 + (30-50)^2}$
= $\sqrt{(2)^2 + (-20)^2}$
= 20
d9, 3 = $\sqrt{(5-5)^2 + (30-50)^2}$
= $\sqrt{(0)^2 + (-20)^2}$
= 20

C1 4			Centroid	
Cluster X1		X2	X3	Kelompok
С9	4	20	20	1

Update Centroid

Centroid X1		X1	X2		
	d1	(4+5)/2 = 4	(26+30)/2 = 28		

Data
$$10 = 5, 30$$

 $d10, 1 = \sqrt{(5 - 4)^2 + (30 - 28)^2}$
 $= \sqrt{(1)^2 + (2)^2}$
 $= 2$
 $d10, 2 = \sqrt{(5 - 3)^2 + (30 - 50)^2}$
 $= \sqrt{(2)^2 + (-20)^2}$
 $= 20$
 $d10, 3 = \sqrt{(5 - 5)^2 + (30 - 50)^2}$
 $= \sqrt{(0)^2 + (-20)^2}$
 $= 20$

C1 4			Centroid	
Cluster	X1	X2	X3	Kelompok
C10	2	20	20	1

Hasil Clustering

Tabel 3. 2. Hasil Cluster menggunakan Metode K-Means

No	Nama	(X1)	(X2)	(X3)	Kelompok
1	Adrian Putra	0	20	20	1
2	Bayu Kurniawan	20	0	2	2
3	Candra Wijaya	20	2	0	3
4	Denny Prasetyo	10	30	30	1
5	Evan Saputra	5	30	30	1
6	Farhan Maulana	8	20	20	1
7	Gilang Ramadhan	24	2	0	3
8	Hendra Setiawan	24	2	0	3
9	Iqbal Permana	4	20	20	1
10	Junaidi Akbar	2	20	20	1

Pada penelitian ini, metode K-Means Clustering telah diterapkan untuk mengelompokkan kawasan permukiman berdasarkan tiga variabel utama, yaitu infrastruktur dasar (X1), aksesibilitas (X2), dan kondisi sosial ekonomi (X3). Proses klasterisasi menghasilkan tiga kelompok atau Cluster yang masing-masing

menunjukkan karakteristik hunian yang relatif homogen. Metode ini efektif dalam menyederhanakan kompleksitas data dan memberikan representasi visual dan numerik mengenai kondisi kawasan permukiman yang tersebar.

Dari hasil klasterisasi, diperoleh bahwa Cluster 1 (C1) terdiri dari kawasan dengan aksesibilitas sangat baik dan kondisi sosial ekonomi tinggi, meskipun nilai infrastruktur tidak sepenuhnya maksimal. Kawasan dalam C1 dikategorikan sebagai layak huni, karena dua dari tiga indikator utama berada pada kategori unggul, sehingga mampu mendukung kualitas hidup yang baik. Sementara itu, Cluster 2 (C2) menunjukkan dominasi nilai tinggi pada aspek infrastruktur dasar, namun memiliki nilai rendah pada aksesibilitas dan kondisi sosial ekonomi. Karena ketidakseimbangan aspek ini, kawasan dalam C2 dapat dikategorikan sebagai kurang layak huni. Adapun Cluster 3 (C3) menggambarkan kawasan yang hanya unggul pada infrastruktur, namun sangat rendah dalam aspek sosial ekonomi, sehingga dikategorikan sebagai tidak layak huni secara menyeluruh.

Dengan adanya segmentasi seperti ini, Dinas Perumahan dan Kawasan Permukiman dapat memperoleh gambaran yang lebih tajam tentang kualitas lingkungan permukiman berdasarkan indikator yang telah dipetakan. Kawasan dalam C1 dapat dijadikan model atau prioritas pelestarian, sementara kawasan dalam C2 dan C3 dapat menjadi fokus program intervensi, baik dalam bentuk pembangunan sarana prasarana maupun peningkatan kesejahteraan sosial ekonomi warga. Dengan pendekatan berbasis data ini, kebijakan pembangunan dapat disusun secara lebih terarah, efisien, dan responsif terhadap kebutuhan nyata di lapangan.