REZA FEBRIANTI RITONGA, NPM 2109100110 (2025) PENERAPAN ALGORITMA NAIVE BAYES UNTUK PREDIKSI PENYAKIT MALARIA PADA DATA PASIEN PUSKESMAS KOTA RANTAUPRAPAT. Skripsi thesis, Universitas Labuhanbatu.
|
Text
COVER.pdf Download (877kB) |
|
|
Text
BAB I.pdf Download (423kB) |
|
|
Text
BAB II.pdf Download (644kB) |
|
|
Text
BAB III.pdf Download (289kB) |
|
|
Text
BAB IV.pdf Download (3MB) |
|
|
Text
BAB V.pdf Download (195kB) |
|
|
Text
DAFTAR PUSTAKA.pdf Download (175kB) |
Abstract
Penyakit malaria masih menjadi salah satu masalah kesehatan utama di Indonesia, termasuk di Kota Rantauprapat. Penelitian ini bertujuan untuk membangun model prediksi penyakit malaria dengan menerapkan algoritma Naïve Bayes pada data pasien yang diperoleh dari Puskesmas Kota Rantauprapat. Metode Naïve Bayes dipilih karena kemampuannya dalam mengklasifikasikan data secara cepat dan efisien. Dalam penelitian ini, proses pengolahan data dilakukan menggunakan platform RapidMiner, dimulai dari tahap pra-pemrosesan, pembagian data (split data), pelatihan model, hingga evaluasi model. Hasil evaluasi menunjukkan bahwa model memiliki akurasi sebesar 90,67%, presisi 100%, recall 22,22%, dan F1-score 36,36%. Hasil ini mengindikasikan bahwa meskipun model sangat baik dalam memprediksi kasus positif dengan tingkat kesalahan rendah (presisi tinggi), namun masih lemah dalam mengenali seluruh kasus positif yang ada (recall rendah). Oleh karena itu, diperlukan pengembangan lanjutan untuk meningkatkan kinerja model, khususnya dalam mendeteksi kasus positif secara menyeluruh. Penelitian ini juga menunjukkan bahwa RapidMiner merupakan platform yang efektif dan interaktif dalam mendukung pembangunan model klasifikasi berbasis machine learning di bidang kesehatan. Kata Kunci: Klasifikasi, Malaria, Prediksi, Naïve Bayes, RapidMiner ================================================================================================ Malaria remains a major health problem in Indonesia, including in Rantauprapat City. This study aims to develop a malaria prediction model by applying the Naïve Bayes algorithm to patient data obtained from the Rantauprapat City Community Health Center. The Naïve Bayes method was chosen for its ability to classify data quickly and efficiently. In this study, the data processing process was carried out using the RapidMiner platform, starting from the pre-processing stage, data splitting, model training, and model evaluation. The evaluation results showed that the model had an accuracy of 90.67%, a precision of 100%, a recall of 22.22%, and an F1-score of 36.36%. These results indicate that although the model is very good at predicting positive cases with a low error rate (high precision), it is still weak in recognizing all existing positive cases (low recall). Therefore, further development is needed to improve model performance, especially in detecting positive cases comprehensively. This study also shows that RapidMiner is an effective and interactive platform in supporting the development of machine learning-based classification models in the health sector. Keywords: Classification, Malaria, Prediction, Naïve Bayes, RapidMiner
| Item Type: | Thesis (Skripsi) |
|---|---|
| Uncontrolled Keywords: | Klasifikasi, Malaria, Prediksi, Naïve Bayes, RapidMiner============Classification, Malaria, Prediction, Naïve Bayes, RapidMiner |
| Subjects: | Q Science > QA Mathematics > QA75 Electronic computers. Computer science T Technology > T Technology (General) Z Bibliography. Library Science. Information Resources > Z665 Library Science. Information Science Z Bibliography. Library Science. Information Resources > ZA Information resources > ZA4050 Electronic information resources Z Bibliography. Library Science. Information Resources > ZA Information resources > ZA4450 Databases |
| Divisions: | Fakultas Sains Dan Teknologi > Sistem Informasi |
| Depositing User: | Unnamed user with email repository@ulb.ac.id |
| Date Deposited: | 28 Nov 2025 02:34 |
| Last Modified: | 28 Nov 2025 02:34 |
| URI: | http://repository.ulb.ac.id/id/eprint/2000 |
Actions (login required)
![]() |
View Item |
